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types (background, forest, industrial, suburban, urban, downwind and motorway) to observe
Rco around Auckland. Motorway flasks observed Rco of 14 £+ 1 ppb ppm_1 and were used
to evaluate traffic Rco. The similarity between suburban (14 &+ 1 ppb ppm_l) and traffic Rco
suggests that traffic dominates suburban CO,ff emissions during daytime hours, the period of
flask collection. The lower urban Rco (11 + 1 ppb ppm™~!) suggests that urban CO,ff emissions
are comprised of more than just traffic, with contributions from residential, commercial
and industrial sources, all with a lower Rco than traffic. Finally, the downwind sites were
believed to best represent Rco for Auckland City overall (11 4+ 1ppb ppm~!). We demonstrate
that the initial discrepancy between the downwind Rco and Auckland’s estimated daytime
inventory Rco (15 ppb ppm ™) can be attributed to an overestimation in inventory traffic CO
emissions. After revision based on our observed motorway Rco, the revised inventory Rco
(12 ppb ppm_l) is consistent with our observations.
This article is part of the Theo Murphy meeting issue "Radiocarbon in the Anthropocene’.

1. Introduction

CO; emissions from fossil fuels (CO,ff) are the primary reason for the recent rapid increase in the
atmospheric CO, mole fraction [1]. Understanding these CO,ff emissions is crucial for assessing
the global carbon budget and implementing the most effective emission reduction strategies.
Urban areas account for just 3% of Earth’s surface area yet produce approximately 70% of global
fossil fuel emissions, the latter of which is expected to continue increasing [2]. For this reason,
obtaining accurate emissions information has become essential for cities with goals of reducing
their emissions.

Emissions information is well-established at the national and annual scale [3,4] but is less
documented on the city scale. Recently, many cities have begun to inventory their emissions, often
providing emission totals by sector [5-9]. The recent development of high-resolution emission
mabps for cities distribute CO,ff emissions spatially and temporally providing substantially more
detailed information on urban emissions [4,10-17]. However, it can be difficult to quantify
uncertainties and recent research has demonstrated that uncertainties are larger for individual
source sectors than for the totals [4,18]. With goals of reducing greenhouse gas emissions by a few
per cent per year, having emission information with uncertainties greater than reduction goals is
undesirable [19].

Atmospheric measurements can substantiate and constrain bottom-up emissions information.
Comparisons between inventory and atmospheric methods of emissions evaluation improves the
accuracy of both methods. By combining these methods, a more effective quantification of CO,ff
can be used to refine emission reduction strategies. Separating CO,ff from other CO; sources
and sinks is crucial for attribution and can be diagnosed from atmospheric measurements of the
radiocarbon content of CO, (1CO,), an excellent tracer for CO,ff [20-23].

During combustion, a small amount of carbon monoxide (CO) is produced by every CO,ff
emission source. CO, while not a direct greenhouse gas, contributes to climate change through
interactions with ozone, methane and CO;, and is a major air pollutant [24]. The magnitude
of CO over background relative to CO,ff produced (Rco) varies greatly between CO;ff sources
and depends on many factors such as the type of fuel used and the combustion efficiency of the
process. In some cases, CO can be scrubbed using equipment such as a catalytic converter, which
dramatically reduces the produced CO and observed Rco.

Since transport is a dominant emission source in most countries, transport Rco has been the
focus of many studies [25-30]. These studies have shown that transport Rco varies regionally
and temporally and primarily depends on the vehicle fleet composition, age and local emission
control laws. New Zealand has few vehicle restrictions and as a result, would be expected to
observe a greater CO output from transport when compared with emission-regulated cities like
Paris and Zurich, and would be more similar to cities like Indianapolis, which has a similar
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level of emission regulation [29,31]. Average vehicle age also contributes to increased CO output,
particularly in locations with few vehicle restrictions. Auckland, the city of focus, has a relatively
high average vehicle age of 13 years, which is comparable with the US average of 12 years,
but is significantly greater than France, Switzerland, the UK and many other countries [32-
34]. Thus, Auckland measurements were expected to reflect a relatively high transport Rco.
Inventory-based information and atmospheric observations show that residential, commercial
and industrial emissions typically have a much lower Rco than traffic [9,31,35], although this
would be expected to range significantly depending on combustion conditions and emission
controls [36,37].

In this study, we measure Rco, the ratio of excess (enhancement over background) carbon
monoxide (COxs) to CO»ff, at different site types in Auckland, New Zealand, using atmospheric
measurements. These Rco measurements were then used to evaluate the relative contribution of
traffic (with high Rco) to other Auckland CO;ff source sectors (with lower Rco).

2. Methods
(a) Inventory data for CO,ff and (O

Auckland Council developed an air emissions inventory for the Auckland region in 2016 in
accordance with the Global Protocol for Community-Scale Greenhouse Gas Emission Inventories
[38—41]. In 2016, 65.8 kt of CO (66.8% transport, 28.1% domestic and 5.2% industrial) and 6852 kt
of CO; (59.1% transport, 6.6% domestic, 34.3% industry) was produced. From the inventory,
we determine Rco from each source sector, and for Auckland City as a whole, taking the
ratio of CO:COxff from the inventory. It should be noted that Glenbrook Steel Mill (New
Zealand Steel Limited) accounted for approximately 25% of Auckland’s total CO,ff emissions
and approximately 76% of Auckland’s industrial CO,ff on its own in 2016 [38]. While Glenbrook
is within the Auckland City jurisdiction, it is outside of the urban area (figure 1). Thus, we remove
the emissions of both CO and CO,ff from Glenbrook from the inventory when calculating the
source sector and whole city Rco values.

(b) Sampling site selection

Auckland is the largest city in New Zealand with a population of about 1.4 million people [42] and
produces over 25% of New Zealand’s CO,ff emissions [9,43]. Twenty-eight different sites were
selected around the Auckland region. These sites observed a large variety of different emission
types and were chosen to cover a large geographical area. The locations were classified into one of
the following site types: background, forest, industrial, motorway, urban, suburban or downwind
(figure 1 and table 1). Background sites were located on Auckland’s coasts to measure incoming
air masses (electronic supplementary material, figures S.1 and S.2). Under the prevailing south-
westerly winds, these sites were Manukau Heads Lighthouse (MKH) and Muriwai (MW) on
Auckland’s West Coast, but under north-easterly wind, the downwind sites on Auckland’s East
Coast were categorized as background. The two forest sites were in or near to the Waitakere
Ranges, a large, lightly populated forested region within the Auckland City boundary (electronic
supplementary material, figures S.3 and S.4). The two industrial sites were in light industrial areas
that contained machinery, chemical pollutants and heavy vehicles as well as traffic (electronic
supplementary material, figures 5.5 and S.6). The motorway site was close to the Auckland
Northwestern Motorway (10 m away) and was expected to be strongly dominated by local
traffic emissions (electronic supplementary material, figure S.28). Urban locations were identified
by their higher population densities and were situated near to the Auckland Central Business
District (CBD) (electronic supplementary material, figures S.20-5.27). Suburban locations were
located outside of the inner city in Auckland’s suburbs which are dominated by low-density,
single-family housing (electronic supplementary material, figures S.7-S.13). Most of the sites
fell into the urban and suburban site categories. Finally, the downwind sites were typically at
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Figure 1. Map of Auckland with sites coloured by site type. Labels for each site correspond to the site IDs seen in table 1. The
location of Glenbrook Steel Mill is marked with a star.

elevated positions such that they observed emissions integrated over a larger area of Auckland,
representing a more generalized Auckland emission signal (electronic supplementary material,
figures 5.14-5.19).

(c) Sample collection

Whole air samples were collected 10 m above ground level by attaching an inlet tube to a
telescopic mast to avoid sampling of immediate ground emissions. It should be noted that
downwind sites were typically located at higher altitudes such as Auckland’s volcanic cones
or clifftops (table 1 and figure 1; electronic supplementary material, figures 5.14-5.19), adding
additional effective height. Each flask sample was captured using a sampler (Masker), which
pumped ambient air through the inlet tube, a filter, a magnesium perchlorate trap (to remove
particulates and moisture), through two pumps in parallel into an evacuated 2.51 flask. The
flasks were flushed with ambient air for 10min at a flow rate of approximately 2.51min~!
before being pressurized to approximately 1 bar above atmospheric pressure over the course
of approximately 1min. Very local, short-term emission sources such as passing heavy traffic
were avoided.

Field campaigns to collect flasks in Auckland were made every few months between October
2017 and February 2021. Sixteen campaigns were undertaken with 426 flasks being collected in
total (electronic supplementary material, tables S.1, S.2 and S2.1). Air samples were collected
primarily between 8.00 and 18.00. Since samples were collected manually, time of collection varied
for each sample. In most cases, we collected the background samples earlier in the day than the
other sites. A small set of samples was collected during COVID-19 lockdowns in April 2020 and
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Table 1. Sites observed around Auckland using flask data. Each site was assigned a site type depending on its location. The ID
column corresponds to the site IDs in figure 1. Downwind sites that were situationally used as background under easterly winds
are marked by an asterisk.

site name type altitude (m) latitude longitude ID
Manukau Heads Lighthouse background 234 —37.0507 174.5448 1

these campaigns (two) were excluded from the dataset due to large changes in the observable
emissions over the lockdown period [44].

CO and CO; mole fractions were measured using cavity ring-down spectroscopy at NIWA
using a Picarro G2401 [45] with precisions of 5 ppb and 0.05 ppm, respectively. Flow was restricted
using a critical orifice to conserve sample air for subsequent analyses. To analyse *CO, in each
sample, CO, was isolated from each sample using cryogenic extraction [46], graphitized [47]
and analysed in the Extended Compact Accelerator Mass Spectrometry system in the Rafter
Radiocarbon Laboratory at GNS Science [48]. Results are reported as A4C [49].
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(d) Calculation of enhancements in CO and CO,ff

The ‘excess’ or enhancement in CO and CO,ff was determined for each sample, which was the
added mole fraction as the air passed across Auckland City. First, the background incoming air
CO mole fraction and AC were determined. In most campaigns, when the wind direction was
from the west or southwest, the two primary background sites (MKH and MW) were selected.
Two flasks were collected for each campaign at each background site, typically collecting from
one site on each day of the 2-day campaign. If all four samples showed consistent values for CO,
CO, and A'C, a weighted mean of all background flasks was used as a background for that
campaign. If the two different days of background measurements showed significant differences
in their reported compositions, each day was treated separately, averaging the two available
background measurements for that day. The average representation error for the background
flasks for CO, CO;, and A'*C was 3 ppb, 1 ppm and 1%o, respectively, across all flask campaigns.
This was calculated from the difference between the background values and the averaged
background for each campaign. When the wind was from the east or northeast (Campaign 6,
8, 10 and 16, electronic supplementary material, table S.2), we instead used Beachlands Hawkes
Crescent, Musick Point and Rangitoto Summit as background, following the same methodology
of averaging across multiple measurements. MKH and MW were treated as downwind sites for
those campaigns. For one campaign, the wind direction changed from southwest in the morning
to northeast in the afternoon. Since most samples were collected in the afternoon on that day,
Beachlands Hawkes Crescent and Musick Point were used as the background sites for both days
of the campaign. MKH and MW, the two usual background sites, showed significantly greater
CO over these 2 days and were classified as downwind sites. The chosen background sites
and samples are listed in the electronic supplementary material for each campaign (electronic
supplementary material, table S.2). The uncertainty in A'*C for the background was derived by
combining the measurement uncertainty of the background measurements with the uncertainty
from the spread in A™C values measured at each background site [47].

CO»ff was calculated from the observed A*C (Ay,s), CO, mole fraction (CO0bs) and AM4C
measured at the background site (Apg) (equation 2.1) [21,50],

COz0bs(Aghs — Apg)  COzother(Agther — Apg)

CO,ff = - ) 2.1)
Aff — Apg Agf — Apg

where Ag is the A1C value for fossil fuel CO, (—1000%0 by definition). The second term in
the equation is a small bias term that adjusts CO»ff to allow for contributions of *C from
other sources such as heterotrophic respiration, ocean exchange and nuclear *C sources. Since
New Zealand has no nuclear sources and we sample the incoming air arriving on the western
coast of Auckland, we assume that ocean and nuclear sources are included in the background
measurement. Therefore, only heterotrophic respiration occurring between background and
observing sites is corrected for. We use a bias value of —0.5+ 0.2 ppm [22,51], and this value has
been independently estimated for New Zealand from C in recent grass samples [44].

COxs was determined by subtracting the measured background CO mole fraction (COpyg) for
a campaign from the observed CO mole fraction (COgp,g) for each sample (equation 2.2).

COx8 = COpbs — COpg. 2.2)

(e) Determination of R ratios

Plotting COxs against CO,ff produces a scatter plot with a gradient equal to the emission ratio
Rco [37,51-53]. To calculate the gradient, a York fit was chosen over an ordinary least squares
(OLS) fit to calculate the line of best fit [54,55]. A York fit takes the uncertainty of both the
dependent and independent variables into account and was used as the primary technique for
calculating Rco from the flasks [37,53,56-58]. The BFSL (best fit straight line) R package was used
to create these York fits and determine the emission ratio and uncertainty [59].
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Several outlier samples with higher/lower COxs than other samples from the same site during
the 5-year measurement period showed unusually high or low Rco values (determined from
the observed COxs value, electronic supplementary material, table S.3). If the COxs of a sample
was significantly greater/less (by more than 50 ppb, or 30 ppb for the forest sites due to reduced
emissions at those locations) than the initial trend line fit for that site type, it was likely biased
by a local emission source not representative of the site type, such as a car without a working
catalytic converter or a nearby gas barbecue. These points were marked as outliers and a new
trendline was fitted excluding these points. COxs was used instead of Rco to determine outliers
since Rco tended to approach very high values when CO»ff approaches zero, despite being
within the uncertainty of the trend line. Since each air sample was collected over approximately
1min, an intermittent local emission source could dominate the measurement and increase
the emission ratio observed from that measurement. Only a few outliers were removed from
each site type dataset so Rco did not change substantially, but the measured 2 values slightly
increased. Additionally, points with much larger COxs and CO»ff than other samples could
heavily constrain the 72 value determined from the correlation. These constraining points tended
to increase 2 significantly such that they were less representative of the overall correlation of the
dataset but changed Rco minimally (within the Rco uncertainty). If the constraining point(s) in
the plot altered the York fit correlation substantially, they were also filtered from the dataset. After
removing outliers, some constraining points and data collected over the COVID-19 lockdown
period in New Zealand, the total number of samples examined was 346 (electronic supplementary
material, table S.1). Each point that was filtered from the dataset is described in the electronic
supplementary material, table S.3. Rco was determined for each of the site types excluding the
background site (motorway, urban, suburban, downwind, industrial and forest).

Small temporal changes to Rco would be expected but observing annual changes was difficult
with the limited data. Since 2018 and 2019 were the only measurement years with a full year
worth of data, the flask data from each year were combined into a single dataset.

3. Results
(a) (0 and CO,ff magnitudes by site

At the 28 sites, CO and A4C ranged from 45 to 344 ppb and from —41%o. to 18%., respectively
(figure 2). Overall, the motorway site had the greatest CO, lowest A*C and greatest range of
values. High CO and low AC were also observed at the urban, downwind and suburban
locations. As expected, the smallest measured CO and the greatest measured A'*C were at the
background and forest sites with relatively low CO and high A'C also seen at the industrial
sites.

COxs (equation 2.2) ranged from —7 to 275 ppb (figure 2). Since the background sites tended
to have the lowest CO values due to few local emission sources, most excess values were positive,
but a few measurements showed weakly negative values indicative of the uncertainty in the
measurements and the choice of background.

Similarly, A™C was used to calculate CO,ff, which ranged from —1 to 21 ppm (figure 2).
Samples with high CO,ff tended to also have high COxs.

The location and emission sources surrounding each site will influence the observed COxs and
CO,ff values. This includes the source type, the magnitude of emissions from that source and the
location of the source relative to the measurement site. Additionally, atmospheric transport has a
significant influence on observed mole fractions [60]. Atmospheric transport disperses emissions
so that sources closer to the measurement site have a larger impact on the observed mole fractions.
High wind speeds and less stable air disperse emissions at a faster rate. While COxs and CO,ff
were expected to increase in the winter due to an increase in residential and commercial emissions
from heating [40], a seasonal change is not obvious in our mole fraction dataset (figure 2). Likely,
competing influences from variable atmospheric transport are dominating seasonal changes in
the variability in observed CO,ff and COxs.
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(b) Diagnosing R for each emission sector

(i) Motorway site

The motorway site (Western Springs Garden Community Hall) had a relatively high Rco of

14+ 1ppbppm~! and the greatest range in COxs and CO,ff (maximum COxs of 275 ppb
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Figure 3. R plot for each of the six site types.
Table 2. Rgo and r* values measured for each of the six site types.
site type Reo (ppb ppm ") r
motorway 14+£1 0.9
industrial 16+£3 0.4
suburban 14+1 0.6
downwind N+1 0.8
urban N+ 0.8
forest 0+4 0

and COoff of 21 ppm) (figure 3 and electronic supplementary material, figure S.34, table 2).
The proximity of the site to the Auckland Northwestern Motorway and the high correlation
coefficient (> =0.9) of the plot indicated that the emission ratio measured at the motorway site
was representative of Auckland’s traffic emission ratio. While the assumption was made that
the motorway site was dominated by traffic emissions, these measurements were also expected
to observe small amounts of CO»ff from non-traffic sources. Unexpected non-traffic emissions
would impact the validity of our results by biasing the traffic Rco and our estimation of the
traffic contribution to Auckland’s emissions. However, due to the traffic density at the site,
the motorway Rco was expected to provide a good representation of Auckland’s traffic Rco.
Auckland’s motorway Rco also showed a strong similarity to the traffic Rco measured for the
US car fleet (approx. 15ppb ppm™1), which was expected to be comparable with the Auckland
car fleet due to similar emission regulations [26,27,29,31]. It should be noted that transport Rco
tends to decrease over time as newer cars replace older cars on the road [26,61]. As a result, older
studies were expected to overestimate the current Rco which introduces an uncertainty to this
comparison.

One caveat is that different vehicle types and speeds can alter the observed Rco [27,62-64].
Rco is typically lower under motorway conditions (uninterrupted driving, warm engines) than
in urban/suburban conditions (stop-and-go traffic, cold starts). Since our motorway site, Western
Springs Garden Community Hall, is located between a motorway and a busy road, it represents
a mixture of free-flowing and congested traffic. The measurement uncertainty of the observed
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Figure 4. R calculated from Auckland inventory for the transport, domestic and industrial sectors. Includes original inventory
calculations (removing sources not expected to be observed during sample collection, solid bars) and revised inventory values
(striped bars).

Rco was estimated from the York fit, but it remains difficult to estimate the uncertainty in traffic
Rco due to the different vehicle fleets/driving conditions at the other site types. Nonetheless, we
expect that such bias in our traffic Rco value would bias our Rco value low.

The 2016 inventory for Auckland estimates Rco as 20 ppb ppm ™! for Auckland’s traffic sector
[40] (figure 4). There are several possible reasons for the discrepancy between the inventory and
observed atmospheric value of 14 4 1 ppb ppm~!. Inventory CO is determined by multiplying
activity data by an emission factor assigned to each emission source. The uncertainty in the CO
emission factor is stated to be 40% for petrol vehicles in addition to an approximate uncertainty
of 22% for activity data [65]. Inventory CO has also been shown to be too high in a number of
international studies so a similar overestimation is plausible for Auckland [22,31,37,51,52,66,67]. It
is also possible that traffic CO,ff is underestimated by the inventory resulting in an Rco that is too
high. This seems unlikely since CO»ff is used to derive CO emissions in the inventory calculation
[40]. Further, our observed Rco is consistent with overseas studies of similar vehicle fleets and
similar emission regulations that observed traffic Rco values of approximately 15ppb ppm™!
[26,27,29,31].

(ii) Urban, suburban and downwind sites

Rco was similarly calculated for each sector from inventory data. Auckland’s domestic inventory
(residential and commercial emissions) includes emissions from coal (Rco = 56 ppb ppm_l), LPG
(Rco =0.1ppb ppm~1), natural gas (Rco = 0.4 ppb ppm 1), lawn mowers (Rco = 390 ppb ppm™1)
and wood/outdoor burning (CO and CO;bio produced, no CO,ff), which gives a total domestic
Rco of 166 ppb ppm ™~ (table 3) [40].

Since the flask samples collected in Auckland were collected between 8.00 and 18.00 on
weekdays, we excluded wood burning from our estimates. While wood burning contributes
about 99% of Auckland’s household CO, minimal wood burning is expected for home heating
during the sample collection period [40,68]. Wood burning is also minimal outside of the winter
months (June, July, August), which was when over 75% of the samples were collected [68].
Additionally, outdoor burning, which is banned in Auckland’s urban areas (allowed in rural
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Table 3. Table of domestic sector emissions [40]. Wood and outdoor burning are excluded since they do not typically occur
during the time periods of our sampling campaigns.

domestic source 0 (tyr™ CO,ff (ktyr™) Reo (ppb ppm ™)
coal 7 2 56
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e g T
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areas within city boundary but would not be observed by our city measurements) and lawn
mowing, which would be expected to be uncommon during the daytime on weekdays, were
also omitted. Excluding these emissions leaves domestic emissions from coal, LPG and natural
gas, which gives an inventory domestic Rco of 1 ppb ppm ™! (figure 4) [40]. Auckland’s industrial
inventory includes emissions from steel production, glass making, chemical manufacturing and a
number of other industrial processes [38]. Auckland’s industrial source sector Rco was calculated
to be 1.6 ppb ppm ™!, excluding the Glenbrook Steel Mill emissions as discussed in §2.1 (figure 4).
Industrial CO and CO; had estimated uncertainties of 25% giving an Rco uncertainty of 50%.
These inventory values are consistent with those determined in a similar study in Indianapolis,
which calculated Rco for residential, commercial, industrial and airport emissions collectively to
be 2 ppb ppm~! (excluding emissions from a coal-fired power plant in the centre of the city) [31].
By combining our new observed traffic Rco with the inventory CO; emissions, we calculated the
revised traffic CO for the Auckland inventory (original traffic CO thought to be overestimated).
The inventory traffic CO, and revised traffic CO were then added to the inventory values
for the domestic and industrial sectors to calculate a new inventory-based Rco for Auckland
for the sample collection period (weekday 8.00-18.00). The new weekday daytime inventory
Rco for Auckland was calculated to be 12 ppb ppm~! (figure 4), which will be used to compare
the inventory with the flask observations. Extension of the revised traffic Rco to the complete
inventory (includes weekday and weekend emissions) while still excluding the emissions from
Glenbrook Steel Mill and any biogenic CO, (from wood burning) gives Auckland’s Rco as
20 ppbppm~1.

The urban sites had an Rco of 11+ 1ppb ppm~! and had a high correlation (r*> = 0.8) (figure 3
and electronic supplementary material, figure S.33, table 2). COxs and CO,ff had maximum
values of 156 ppb and 13 ppm. The urban Rco was significantly lower than that of the motorway
site (14 + 1 ppb ppm™1), which suggests that Auckland’s urban sites observe a strong non-traffic
CO,ff source (electronic supplementary material, figures 5.20-5.27). Based on the Rco values for
each sector we determined above, we estimate that during the daytime on weekdays, 70% £ 20%
of the CO,ff emissions observed at the urban sites is from traffic and the remaining 30% is from
other sources.

The suburban sites had an Rco of 14+1ppb pprrf1 and an 72 of 0.6 (figure 3 and
electronic supplementary material, figure S.31, table 2). COxs and CO,ff for the suburban sites
had maximum values of 120ppb and 9 ppm. Relative to the urban sites, the suburban sites
had a significantly higher Rco that was consistent with the traffic Rco that we observed
(144 1 ppb ppm~). This implies that CO,ff from suburban sites is dominated by traffic emissions
between 8.00 and 18.00 on weekdays, the period of flask collection. The suburban sites were
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further out from the CBD than the urban sites and were therefore expected to have a lower density
of commercial and industrial sources, and primarily observe traffic and residential sources
(electronic supplementary material, figures 5.7-5.13). Since most residential emissions are less
active during daytime hours (home heating, natural gas combustion for cooking, lawn mowers,
barbecues, etc.) [40], this is consistent with the inventory.

The downwind sites had an Rco of 11+ 1 ppb ppm*l and an 7% of 0.8 (figure 3 and electronic
supplementary material, figure S.32, table 2), very similar to the urban Rco. COxs and CO,ff
had maximum values of 138 ppb and 14 ppm. Since the downwind sites were in more elevated
locations further from sources, they were expected to be less influenced by local emission sources
and would consequently observe more mixed air from a larger region of the city (electronic
supplementary material, figures S.14-5.19). For this reason, the emission ratio of the downwind
sites was thought to best represent the emission ratio of Auckland as a whole. This observed
whole city Rco is consistent with the inventory calculated value (adjusted for our observed traffic
Rco) of 12 ppb ppm_l. These observations indicate that 70% 4 20% of CO;ff in Auckland is from
traffic, at least during weekday daylight hours, and is consistent with the inventory estimate of
CO,ff source sector contributions. This conclusion was limited to the sample collection period.
To evaluate the complete inventory, flask collection would be required outside of this sample
collection period.

As noted earlier, our traffic Rco could be biased low for suburban and urban areas since it is
based on motorway observations. Since the traffic Rco for the motorway site was based on the
assumption that traffic emissions dominated observed emissions, the motorway Rco could also
be biased low if non-traffic CO,ff was observed at the motorway site. Both would result in an
overestimate of the traffic contribution of CO,ff at the urban, suburban and downwind sites. The
consistency between our estimated traffic contribution to CO-ff at each site type and the inventory
CO»ff for Auckland suggest that such a bias in traffic Rco is small.

(iii) Industrial sites

The industrial sites had the highest Rco of all site types of 1643 ppbppm~' and an * value
of 0.4 (figure 3 and electronic supplementary material, figure S.30, table 2) although with the
poorer correlation, they were not significantly different from the motorway site. COxs and CO,ff
had maximum values of 68 ppb and 5ppm. Both industrial sites are influenced by a mixture
of light industry and traffic, including heavy traffic (electronic supplementary material, figures
S.5 and S.6). Excluding Glenbrook Steel Mill emissions, Auckland’s inventory industrial Rco
was calculated to be 1.6 ppbppm™"! [38]. The observed Rco is consistent (within uncertainty)
with traffic dominating the emissions in these areas. However, the 2 value of 0.4 is significantly
smaller than the other sites, which suggests that temporally varying industrial emission sources
could result in variable observed Rco. For example, certain manufacturing processes only operate
intermittently throughout the day, which would contribute to a greater spread of values. Typically,
industrial sources have smaller Rco due to stricter emission regulations but light industry can
strongly vary when not regulated [53,69].

(iv) Forest sites

The two forest sites (Titirangi Woodfern Crescent Park and Waitarua Community Centre) were
located close to and in the Waitakere Ranges, a regional park that spans over 16000 hectares
(figure 1; electronic supplementary material, figures S.3 and S.4). These sites show little correlation
between COxs and CO,ff (1> =0) and a small range of COxs and COxff (-3 to 37 ppb and —1
to 3ppm), indicating that there were very few local emission sources observed by these sites
resulting in signals that were too small to be meaningful.

CO is also produced by oxidation of volatile organic compounds (VOCs) supplied
naturally from plants [70-72]. VOC production varies between different types of forests with
deciduous trees, particularly eucalyptus, being particularly high VOC producers [73,74]. Limited
information is available on VOC and CO production from New Zealand native forests but trees
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like the pohutukawa and rata are in the same family as the eucalyptus and are present in the
Waitakere Ranges, so might be expected to produce a higher level of VOCs and CO. While
CO derived from VOCs has been shown to be significant in other urban locations [72,75], the
Auckland forest sites maintained a relatively low COxs throughout all seasons of the year in
our observations. These results implied that VOC-produced CO in the Waitakere Ranges is not
a significant contributor and that the CO bias from VOCs is less important for the New Zealand
environment.

4. Conclusion

Rco for traffic in Auckland was determined from the motorway site to be 14 4 1 ppb ppm ™!
under the assumption that few non-traffic sources were observed at the motorway site. This was
comparable with car fleets seen in locations with similar vehicle fleets and emission controls. The
suburban sites had an Rco of 14+ 1 ppb ppm ™! that is consistent with a traffic CO,ff source and
indicates that during the flask collection period (8.00-18.00), Auckland suburban emissions are
dominated by traffic emissions. The industrial sites (16 + 3 ppb ppm™!) also had a much greater
spread of values, which suggests that a greater mix of sources were present at the industrial
sites than the suburban sites and that emissions tend to vary more day to day. The forest sites
showed very little correlation due to minimal CO and CO»ff sources in the Waitakere ranges
but demonstrate that CO production from biogenic VOCs is not a substantial source in the New
Zealand environment. The urban and downwind sites had very similar Rco of 11+ 1 ppb pprrf1
that were significantly smaller than the traffic Rco which suggests that about 70% 420% of
Auckland’s CO,ff emissions are from traffic and the remainder are from other sources. Our
observations indicate that CO from traffic is overestimated in the Auckland inventory. When we
adjust traffic CO emissions to match our observations, we find that our whole-city (downwind)
observations are consistent with the overall inventory estimate of Rco of 12 ppb ppm ™.

Our results demonstrate that observations of CO,ff and CO made at the local scale can be
used to partition CO,ff emission sources within an urban area and improve inventory estimates
of emissions.
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